

Acid-Base Physiology: I

A practical approach to the diagnosis of metabolic acidosis

Aranya Bagchi, MBBS DACCPM

Disclosures

- Consultant for Lungpacer® Medical Inc.
- · Dry subject!
- Requires repetition and some memorization

Outline of the lectures

- Part I (04/16/18):
 - An approach to the diagnosis of acid base disorders (with a particular focus on metabolic acidosis)
 - Practice exercises
 - A primer on lactic acidosis
 - A (very brief) look at the Stewart method
- Part II (04/23/18):
 - Treating acid-base disorders: when, how, and does it matter?
 - A brief overview of alpha stat and pH stat

Part I: Objectives

- · Why focus on metabolic acidosis?
- Outline of approaches to acid-base disorders
- A practical approach to diagnosing acid-base disorders
- · Acidosis problems to work through
- A quick review of lactic acidosis
- Stewart pros and cons

WHY METABOLIC ACIDOSIS?

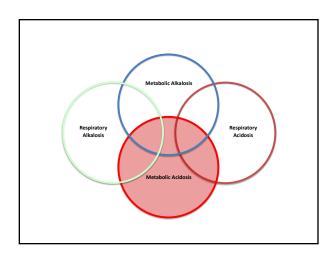


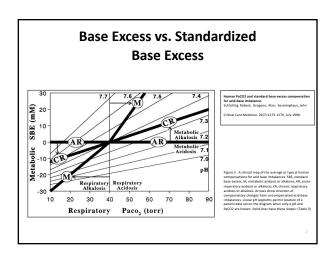
TABLE 1. MAJOR ADVERSE CONSEQUENCES
OF SEVERE ACIDEMIA.

Cardiovascular
Impairment of cardiac contractility
Arteriolar dilatation, venoconstriction, and centralization of blood volume
Increased pulmonary vascular resistance
Reductions in cardiac couptur, arterial blood
Reductions in cardiac output, arterial blood
Sensistration to reentrant arrhythmias and reduction in threshold of ventricular fibrillation
Attenuation of cardiovascular responsiveness to catecholarimise
Respiratory
Hyperventilation
Decreased strength of respiratory muscles and promotion of muscle fatigue
Dyspnea
Metabolic
Increased metabolic demands
Insulin resistance
Inhibition of anaerobic glycolysis
Reduction in ATT synthesis
Hyperkalemia
Cerebral
Inhibition of metabolism and cell-volume regulation
Obtundation and coma

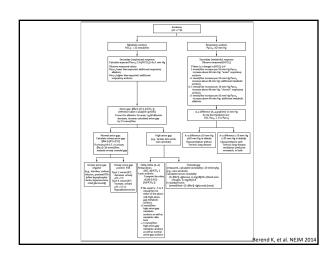
APPROACHES TO ACID-BASE DISORDERS

Definitions

- Acid:
 - Arrhenius: Any substance delivering a H⁺ ion into a solution
 - Brønsted-Lowry: Proton donor
- pH=pKa + log [A⁻]/[HA] (Henderson-Hasselbach eq)
- Strong Acid: Low pKa, completely dissociated at physiologic pH
- Weak Acid: High pKa, incompletely dissociated at physiologic pH

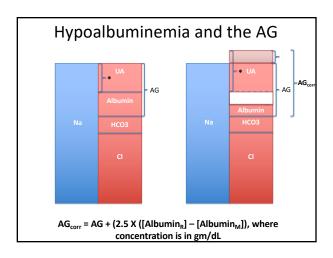

Approaches to understanding acidbase physiology

Descriptive	Semi-quantitative	Quantitative	
Henderson- Hasselbalch	Base Excess	Physical Chemical	
pCO ₂ "Fixed acids" H ⁺	pCO ₂ Buffer Base	pCO ₂ SID A _{TOT}	Affecters
HCO ₃ - Anion Gap	SBE	SIG	Markers & Derived Variables


Kellum JA. Critical Care, 2005

A quick question:

- Is the Base Excess value reported in our ABG results influenced by the PaCO₂?
- Consider the following blood gas result: pH=7.02; PaCO₂=80; BE= -7
- · This ABG shows:
 - a) Acute respiratory acidosis only (the BE is due to the high PaCO₂)
 - b) Respiratory acidosis + metabolic acidosis



A PRACTICAL APPROACH TO
METABOLIC ACIDOSIS BASED ON THE
PHYSIOLOGIC METHOD

Two modifications to the 'physiologic method'

- Correction of the Anion Gap (AG) for hypoalbuminemia
 - AG = [Na⁺] ([Cl⁻] + [HCO3⁻]) = Unmeasured Anions (Albumin + bad stuff)
 - In other words, AG is a surrogate for UA
 - Critically ill patients often have low albumin levels
- Calculating the delta-delta (Δ/Δ)

Urinary AG/Osm Gap

- Normal response to metabolic acidosis is to increase urinary H⁺ excretion (as NH₄⁺)
- NH₄⁺ is usually excreted with Cl⁻ (Na+K+NH₄-Cl=0)
- Therefore the UAG is an indirect estimate of NH₄⁺ excretion
- A more negative UAG suggests HCO₃ losses (GI or renal (ptoximal RTA))
- A positive UAG suggests impaired urinary acid excretion (distal RTA (1 and 4), hypoaldesteronism)
- A high urinary osm gap in non-gap acidosis suggests normal NH₄ excretion, while a low (<40) gap suggests impaired acid excretion
- Use U Osm gap (instead of UAG) when U Na <20 or pH>6.5

A relatively simple approach to evaluating metabolic acidosis

- 1. pH -> Acidemia/Alkalemia
- 2. SBE/HCO₃ -> Metabolic Acidosis/Alkalosis
- Expected PaCO₂ [=(1.5 X [HCO₃⁻]) + 8)+/- 2] for met. acidosis; ΔPaCO₂ = 0.7 X ΔHCO₃ for met. alkalosis-> Superimposed respiratory acidosis/alkalosis/neither
- 4. AG and AG_{corr}
- 5. If AG_{corr} is high -> Δ/Δ
- If Ag_{corr} wnl -> Urinary AG ([Na] + [K] [Cl])/ Urinary Osmolal Gap (2x [Na] + 2x [K] + [UUN/2.8] + [U Gl/18)
- 7. Plasma Osmolal Gap

A word on secondary (compensatory) responses

- Complete compensation in chronic respiratory alkalosis and (perhaps) chronic respiratory acidosis
- Multiple formulae exist it is difficult to remember them all – here is what I remember:
 - $-\Delta pH/\Delta PaCO_2$ (acute): 0.08/10
 - Expected $PaCO_2 = (HCO_3 \times 1.5) + 8$ (acidosis)
 - Expected PaCO₂ = $(0.7 \times [HCO_3 24]) + 40$ (alkalosis)
 - Expected PaCO₂ = HCO₃ + 15 (both acidosis and alkalosis)

A 67 year old patient has acute cholangitis. She is on 30 mcg/min levo, 0.04 vasopressin, with a MAP of 67 mm Hg. Her Labs are as follows:

pH:7.12, Lactate 18, Serum HCO₃: 6 She is tachypneic but not in distress.

Does she need to be intubated because of her high lactate?

- If so, why?
- If not, what would prompt intubation, assuming she does not get worse from a hemodynamic perspective?

Practice Examples

- To get a reasonably detailed picture, you need to order 3 labs, simultaneously:
 - ABG
 - Chem7
 - Albumin
- A way to cross-verify ABG and bicarb:
 - The Henderson eq ([H] X [HCO $_3$]) = K X PaCO $_2$, where K = 24 and [H] is molar concentration of H $^+$ ions (determined by pH)

Table 1 pH values and equivalent $[H^+]$ for water. $[H^+]$ is the physical chemistry expression of molar concentration H^+ .

pH value	[H ⁺]; nmol.l ⁻¹	
7.6	25	
7.5	32	
7.4	40	
7.3	50	
7.2	60	
7.1	80	
7.0	100	
6.9	125	
6.8	160	

Morris and Low. Anaesthesia 2008

Define the acid-base abnormalities

Case 1 Primary Respiratory alkalosis High AG metabolic acidosis 36.4 0.97 GLU 141(H) ANION 25(H) 8.0(L) 8.4(L) CA IC PHOS MG URIC TBILI DBILI 3.1 1.5(LT) 3.8 2.0(T) 14.3(H) 7.3(H) 3.1(H) 7.0 3.5 3.5 2.0(H) 0.3 7.4 4.1 3.3

	Table 3 Measured patients with acid-b				
		Patient 88	Patient 59	Controls $(n = 9)$	
	Measured values				
	pH	7.40	7.33	7.42	
Patient 88	paCO2 (mm Hg)	39	30	38	Patient 59
High AG	$[Na^+]$ (mEq/I)	137	117	142	 High AG
metabolic	$[K^+]$ (mEq/l)	4.9	3.9	4.1	metabolio
acidosis	[Cl ⁻] (mEq/l)	102	92	106	acidosis
Metabolic	$[Mg^{2+}]$ (mEq/l)	1.6	1.4	0.8	
alkalosis	[Ca ²⁺] (mEq/l)	3.2	3.0	2.3	
	Albumin (g/l)	6	6	44	
	P _i (mmol/l)	0.3	0.6	1.0	
	Calculated values				
	[HCO ₃ ⁻] (mEq/l)	24	15	24.5	
	[Cl ⁻] _{corr} (mEq/l)	106	112	106	
	ΔAG_{corr} (mEq/I)	13	11	3	
	SIG (mEq/l)	19	18	8	
	BE _{lab} (mEq/l)	0	-10	0.3	

					Cas	e 4					
A female patient with fever, vomiting, and postrenal failure											
Hemogl obin; g/dL	Na+ meq /L	K+ meq /L	Cl- meq /L	HCO 3- meq //L	Anion gap; meq/L	Albu min g/dl	pН	PCO 2 mm Hg	Lact ate, meq /L	Osm/ osm gap	Creatin ine, mg/dl
11	140	4.3	89	6	45	2.4	7. 32	12	<2	306/1	7.3

This 47 year-old woman has an invasive cervical cancer causing complete obstruction of urinary flow, renal failure with concomitant volume depletion from vomiting and watery diarrhea angoing for weeks after radiotherapy. There is evidence of C. difficile in the stool and E. Coli in the urine with an inflammatory systemic response. Potentially toxic medications in this setting include opiates and acetaminophen.

- High AG metabolic acidosis (Renal failure and acquired 5-oxoprolinurea, a byproduct of impaired tylenol metabolism)
- Respiratory alkalosis Metabolic alkalosis

Seifter JL. NEJM 2014

					Cas	se 5					
A patient											
Hemogl	Na+	K+	Cl-	HCO	Anion	Albu	pH	PCO	Lact	Osm/	Creatin
obin;	meq	meq	meq	3-	gap;	min		2	ate,	osm	ine,
g/dL	/L	/L	/L	meq	meq/L	g/dl		mm	meq	gap	mg/dl
				1.14				Her	/L		
<i>01</i>				//L				Hg	/L	1	
9.3	132	4.2	92	7/L 3.6	36.4	3	7.	12.6	14	338/3	2.7

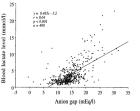
- High AG metabolic acidosis Appropriate respiratory compensation
- Metabolic alkalosis
- Possible ingestion given high osmolal gap

Case 6

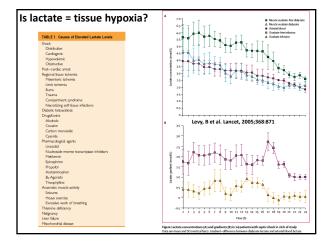
Patient 1, a 22-year-old woman who had been injured in an accident, received 6 liters of iso-135 mmol per liter, potassium 3.8 mmol per liter, chloride 115 mmol per liter, potassium 3.8 mmol per liter, chloride 115 mmol per liter, and bicarbonate 18 mmol per liter. The arterial blood pH was 7.28, and the Paco₂ was 39 mm Hg, The urinary sodium level was 65 mmol per liter, potassium 15 mmol per liter, and chloride 110 mmol per liter,

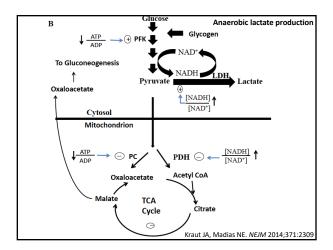
- Answer
 Non-gap (hyperchloremic) acidosis
- Respiratory acidosis

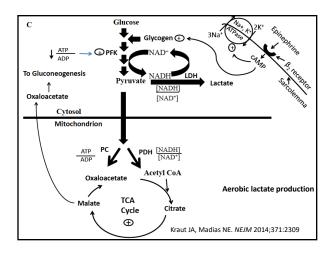
Berend K, et al. NEJM 2014


A REVIEW OF LACTATE IN SEPSIS

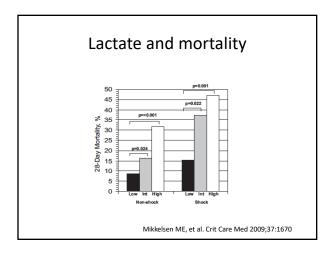
Lactic acidosis and the critically ill patient


- Does a high anion gap/base deficit accurately predict a high lactate?
- Do all patients with an elevated lactate have tissue hypoxia?
- What is the data on lactic acidosis and outcomes? Is there a 'critical threshold' that we should worry about?
- Is lactic acidosis in non-hypotensive patients a concerning sign?
- Should we incorporate lactate clearance into our resuscitation strategies?


Do the anion gap and base deficit predict high lactate?


- · Not necessarily
- A high AG (corrected) is sensitive, not specific
- Some patients may actually have a normal base deficit in spite of high lactate levels (Tuhay G, et al. Crit Care, 2008)

Levraut J, et al. Intensive Care Med. 1997;23:417



Lactate and outcomes

- Lactic acidosis is a poor prognostic sign in multiple settings (septic shock, post-cardiac arrest, trauma)^{1,2,3}
- Higher lactates correlate with worse prognosis1
- Even high-normal values may be a signal for poor outcomes in critical illness^{4,5}
- An elevated lactate portends poor prognosis even in the absence of hypotension^{5,6}
- A generally accepted threshold for severe lactate level is >4 mmol/L
- 1. Trzeciak S, et al. Int Care Med 2007;33: 970; 2. Kliegel A, et al. Medicine 2004;83:274;
- 3. Abramson D, et al. *J Trauma* 1993;35:584; **4.** Nichol AD, et al. *Crit Care* 2010;14:R25; **5.** Mikkelsen ME, et al. *CCM* 2009;37:1670; **6.** Casserly B, et al. *CCM* 2015;43:567

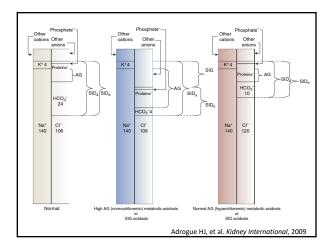
Should lactate clearance be a resuscitation end-point?

- · Opinions differ
- A study found that lactate clearance was noninferior to ScVO₂ as an end point¹
- However, ScVO₂ use has been called into question by recent studies (ProCESS², ARISE³)
- Surviving sepsis guidelines recommend lactate clearance (grade 2C)⁴
- I would suggest using both ScVO₂ and lactate, but in context, and keeping our knowledge of physiology in mind

1. Jones AE, et al. *JAMA* 2010;303: 739; **2.** Yealy DM, et al. *NEJM* 2014;370:1683; **3.** Peake SL, et al. *NEJM* 2014;371:1496; **4.** Dellinger RP, et al. *CCM* 2013;41:580

The Stewart Method

Which of the following is NOT an independent variable in determining the pH of a solution according to the Stewart method?


- A. Strong Ion Difference (SID)
- B. Total weak acid concentration (A_{TOT})
- C. [HCO₃-]
- D. P_aCO₂

Answer: C

- SID = ([Na⁺] + [K⁺] + [Ca²⁺] + [Mg²⁺]) ([Cl⁻] + [SO₄²⁻] + [A⁻]) = 40-44 mEq/L
- [A_{TOT}] = Total weak acid concentration (proteins and phosphate)

Variables in the Stewart Method

- Apparent Strong Ion Difference (SID_A)
- Effective Strong Ion Difference (SID_E)
- Strong Ion Gap (SID_A SID_E) = SIG
- PaCO₂

Table 1 Assess	ment of the metabolic	component of acid-base status	Remarks
Physiological	Plasma [HCO ₅]	Measured pH and PCO ₂	Interpretation complemented by evaluation of plasma anion gap, [Na*]—([Cl ⁻]+[Total CO ₂])
Base excess	Blood base excess (BE)	CO ₂ equilibration method or calculated from measured pH and PCO ₂	BE is a measure of the metabolic component of acid-bas status as reflected in whole blood Interpretation complemented by evaluation of plasma anion gap
	Standard BE (SBE)	Calculated from measured pH, PCO ₂ and hemoglobin	SBE is a measure of the metabolic component of acid- base status as reflected in the extracellular compartmen it is usually calculated automatically from arterial blood gas results, but it can also be obtained using the blood acid-base nomogram with the hemoglobin set at 5 g/df ¹ Interpretation complemented by evaluation of plasma anion gap
Physicochemical	SID _a (apparent strong ion difference)	([Na ⁺]+[K ⁺]+[Ca ⁺⁺]+[Mg ⁺⁺])([Ci ⁻]+[lactate ⁻]) ([Na ⁺]+[K ⁺])([Ci ⁻]+[lactate ⁻]+[other strong anions]) ([Na ⁺]+[K ⁺])[Ci ⁻]	These three formulas for SID _a , as well as additional variants, are currently in use. SID _a is mathematically equivalent to the plasma buffer base of Singer and Hastings ⁶⁴
	SID _e (effective strong ion difference)	[HCO ₃]+{Alb ⁻]+{Pi ⁻] where: [Alb ⁻]=[Alb, g/l] × [(0.123 × pH)-0.631] [Pi ⁻]=[Pi, mmol/l] × [(0.309 × pH)-0.469]	Represents the sum of plasma [HCO ₃] and non- bicarbonate buffers (anionic equivalency of albumin an phosphate)
	SIG (strong ion gap)	$SID_a - SID_e$	An estimate of the concentration of unmeasured anior in plasma that resembles the plasma anion gap Value depends upon the variant of SID, used
	A _{Tot} (total concentration of weak acids in plasma)	2.43 × (total protein, g/dl)	Primarily related to albumin concentration For clinical purposes, approximated by the concentration of total protein

Which of the following is NOT consistent with a non-gap (hyperchloremic) acidosis?

- A. Normal corrected anion gap
- B. Elevated strong ion gap (SIG)
- C. Decreased strong ion difference (SID)
- D. Normal to low [Cl-] concentration

Answer

В

Drawbacks of the Stewart Method

- Complex, requiring many variables
- Mathematically, it is possible to show that the Stewart Method is equivalent to the physiologic method (Krutz I, et al. Am j Physiol Renal Physiol 2008)
- Does not provide a sense of the *physiology*, as opposed to the *chemistry*
- Cannot be used to determine degree of compensatory changes
- Most importantly, essentially NO clinical advantage

Evidence?

- Gunnerson et al 851 patient records analyzed. Strongest association of mortality with lactic acidosis (56%) and SIG acidosis (39%) was significantly higher than hyperchloremic (29%) or no acidosis (25%)¹
- Rocktaeschel et al in 300 patients showed that only unmeasured anions (UA) had a correlation with mortality. Also showed strong correlation between AG_{corr} and SIG².
- 3 studies^{3, 4}, among them a prospective study in >900 patients⁵ showed a tight correlation between AG_{corr} and SIG (R²>0.97)
- Taken together: Unmeasured anions and lactate are correlated with mortality, and AGcorr is as accurate as the SIG in detecting UA

To summarize...

- Frequent repetition helps proficiency
- There is no gold standard method use the system you are comfortable with
- Use as many data points as you can to help support your judgment
- The time to send a lactate is when you first think about it!

Questions?

References

- 1. Gunnerson et al. *Critical Care*, 2006. 10;R22-30. 2. Balasubramanyan et al. *Crit Care Med*, 1999: 27: 1577-81 3. Dubin , et al. *Crit Care Med*, 2000: 35; 1264-70. 4. Kellum et al. *J Crit Care* 1995: 10; 50-55 5. Moviat et al. *Crit Care Med* 2003:7; R41-45

General References:

Kellum, JA. Disorders of Acid Base Balance. CCM 2007;35:2630
Kellum JA. Clinical Review: Unification of Acid-Base Physiology. Critical Care, 2005;9:500
Fidkowsky and Helstrom. Diagnosing metabolic acidosis in the critically ill. CIA 2009;56:247
Adrogue HJ et al. Assessing Acid Base Disorders. Kidney Int 2009;76:1239
Berend K, et al. Physiologic approach to assessment of acid base disturbances. NEJM, 2014;371:1434
Seifter IJ. Integration of acid-base and electrolyte disorders. NEJM 2014;371:1821
Berend K. Diagnostic use of Base-Excess in acid base disorders. NEJM 2018;378:1419
www.acid-base.com