

Initial Safe Management of Cardiac Surgical Emergencies for the Non-Cardiac Anesthesiologist

Patients commonly present for urgent and emergent management of surgical conditions on the cardiac surgical service.

The Massachusetts General Hospital defines "**urgent**" as any case which must be started within 4 hours or the patient is at risk of loosing live, limb, or vision. An "**emergent**" case is defined as a case that must occur within 30 minutes or the patient is at risk of loosing the same. Many conditions that require cardiac surgical intervention may be either hemodynamically stable but rapidly progress to an unstable situation. Others are hemodynamically very labile or "unstable" but can be managed medically until all resources are available to proceed in a safe manner. It is often difficult to tell the difference between the two.

Emergent cardiac surgical cases will present in multiple areas throughout the medical system. These include the Cardiac Surgical Intensive Care Unit (CSICU), Cardiac Catheterization Suite, Emergency Department (ED), Electrophysiology Lab (EP), Labor and Delivery), and the hospital wards.

Table XXX- Sites of Presentation of Cardiac Surgical Emergencies

Presentation Location	Condition/Situation
CSICU	Hemorrhage
	Tamponade
	Refractory ischemia and instability
Catheterization Suite	Coronary dissection
	Aortic dissection
	Tamponade
	Device embolization
ED	Aortic dissection
	Cardiac trauma/tamponade
	Acute aortic injury
	Transport to hospital
Electrophysiology Lab	Tamponade
	Bleeding
Labor and Delivery	Pulmonary embolization
Wards	Hemorrhage
	Post-operative cardiac arrest

Emergency cardiac cases for calendar year 2018 were assessed. One-hundred twenty-five cases were booked as an "emergency". Sternal washout or exploration was the top indication followed by cannulation for extracorporeal membrane oxygenation (ECMO),

repair of aortic dissection, and emergency coronary artery bypass grafting. Most cases ECMO cannulation though were performed in locations other than the operating room leaving sternal exploration and aortic dissections by far the most common emergency cases performed in the cardiac operating rooms.

Table XXX- Cardiac surgical emergency procedures as the MGH (CY 2018)

Procedure	Number (%)	Notes
Repair of aortic dissection	24 (24.5%)	
Sternal debridement/washout/exploration for	44 (44.9%)	
bleeding/hematoma evacuation		
Coronary artery bypass grafting	7 (7.14%)	
ECMO cannulation	5 (5.1%)	
Pulmonary embolectomy	2 (2.04%)	
Aortic root replacement	2 (2.04%)	
Pericardial window	2 (2.04%)	
Minimally invasive mitral valve	2 (2.04%)	
Impella change/reposition	2 (2.04%)	
Less than 1% each	8 (8.2%)	
Heart transplant		
Insertion of RVAD		
Abdominal wound exploration		
Groin exploration		
LVAD exchange		
Repair of aortic pseudoaneurysm		
Resection of aortic valve mass		
ECMO cannulation 1		
	98	

Post-operative Cardiac Arrest

Arrest after cardiac surgery may be due to many different causes or combination of causes. Between 1-3% of the 1 milion patients undergoing cardiac surgery in a year will experience a post-operative arrest (Ngaage 2009). Collapse is associated with a high mortality as well as infection and renal failure. Most arrests occur during the first 24 hours after surgery but some may occur beyond this period.

Table XXX- Potential Cardiac Emergencies

Immediate Post-op	Sub-acute Post-op	Delayed
1 st 12 hours	1 st 24 hours	>24 hours
Hemorrhage	Hemorrhage	Hemorrhage (wire removal)
Tamponade	Tamponade	Stroke
Acute ischemia	Stroke	Tamponade
Arrhythmia		COPD exacerbation
Heart block		
Electrolyte abnormality		
Coronary air embolization		
Drug errors		
Pneumothrax		
Post extubation respiratory failure		

Pulmonary conditions are responsible for 30% of arrests (Ngaage 2009). These conditions should be managed with reintubation or appropriate management of ventilation and rarely require surgical intervention.

Cardiac conditions are the primary causes of arrest with ventricular fibrillation or tachycardia being the primary arrest mechanism in 70%, while asystole occurs in 17% and pulseless electrical activity in 13%. Repeat sternotomy is necessary in more than half of the patients (52%).

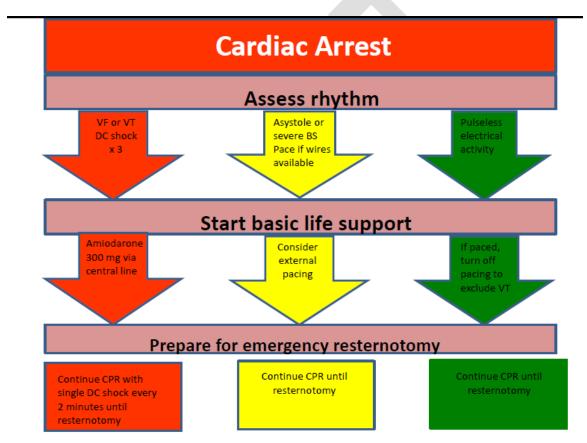
Table XXX- Mode of Resuscitation After Post-operative Cardiac Arrest

Technique of Resuscitation	Frequency
Re-sternotomy	52%
Reinstitution of bypass	16%
Regrafting of vessels in ischemia area	6%
Use of an IABP	45%
Ventricular assist device use	2%

Most cardiac arrest situations will occur in the cardiac surgical intensive care unit (CSICU) setting where a skilled team is available to begin resuscitation efforts prior to return to the operating room.

Table XXX- CSICU resuscitation efforts

Condition	Primary Resuscitation	Secondary resuscitation
Hemorrhage	Volume replacement	Bedside sternotomy
	Coagulopathy correction	
Tamponade	Hemodynamic support	Repeat sternotomy
Acute Ischemia	Hemodynamic support	Coronary angiography
Arrhythmia	Defibrillation/Cardioversion	Repeat sternotomy
	Pacemaker support	IABP placement
Coronary air embolization	Trendelenberg	IABP
	Hemodynamic support	


Management of the Cardiac Surgical Emergency from the Cardiac Surgical Intensive Care Unit or Wards

Cardiac surgical conditions requiring management in the operating room are primarily due to hemorrhage, tamponade, or refractory hemodynamic instability or arrhythmia. Initial resuscitation follows the usual sequence of initiation of airway management and then initiation of breathing and oxygenation, simultaneous with or followed by initiation of a course of action to address circulatory inadequacy.

Table XXX- Circulatory Resuscitation of Cardiac Surgical Patients

Technique of Resuscitation	Method
Assurance of adequate IV access	Large central or peripheral access
Correction of unstable arrhythmia	Defibrillation/Cardioversion
-	Appropriate pacemaker management
	Correction of causes of PEA
	Re-sternotomy
Initiation of hemodynamic support	Vasopressor or inotropic support
Administration of fluids	Lactated Ringers (LR)

	Manual Calina (MC)	
	Normal Saline (NS)	
Administration of blood products	Order blood cells, plasma, platelets	
Emergent Bedside ECHO		
Tamponade		
Hypovolemia		
Myocardial dysfunction		
Bedside surgical intervention?	Emergent bedside sternotomy	
	Chest exploration	
Immediate Mechanical support?	IABP	
	ECMO	
Notify Operating Room of Surgical Emergency (#6810)		
Notify Cardiac Anesthesia Team		
If imminent surgical management in the operating room must occur immediately, the main operating		
room (MOR) team is notified		

Airway and ventilation

If ventilated turn to 100% FiO2 and switch off PEEP

Change to bag/valve with 100% O2, verify ET position and cuff inflation, listen for bilateral breath sounds to exclude pneumothorax of hemothorax If tension pneumothorax suspected, immediately place large bore cannula in the 2nd rib space *anterior* med clavicular line DO NOT GIVE EPINEPHRINE unless senior doctor advices

If an IABP in place, change to pressure trigger

Do not delay basic life support for defibrillation or pacing for more than 1 minute.

Emergency Transport to the Operating Room

Bedside management including emergent sternotomy may allow stabilization prior to transport and even buy enough time until the full cardiac care team can arrive. In addition to the cardiac anesthesiologists, specially trained nurses as well as the perfusion team.

The safest location for continued management of a patient may be in the intensive care unit rather than the operating room if the appropriate team is not available. The CSICU has an abundance of resources including nurses and cardiovascular intensivists to provide medical stabilization. Transport removes this support.

The operating room does provide high level support that cannot be delivered in the CSICU. In certain circumstances transport of a hemodynamically unstable patient is necessary especially if the trajectory of the condition is worsening and surgical management is the only intervention that may save the patient's life.

In certain circumstances, patients must immediately move to the operating room. A complete history and physician along with an informed discussion of the risks is ideal but often there is not enough time. In such a case, critical information can be obtained via the "AMPLE" namonic.

Table XXX- Preparation for Emergent Transport to the Operating Room

Transport parameter	Action
OR availability	Assure that procedure is scheduled with the operating room
Initial OR transport notification	Operating room prepared
	Nurses available
	Perfusion team available or en route
	Confirm cardiac anesthesia en route or in house
Monitors	No less than receiving on floor or ICU
	Defibrillator available
Access	Assure large bore IV access available
	Free flowing IV for bolus medication
Continuous medications	Assure medications are adequate for travel and beyond
	Assure that vasopressors are adequate
Resuscitation medications	Assure bolus syringes of medications available
Ventilation	Notify respiratory therapy
	Ambubag available for all transports
	Transport ventilator
	Adequate oxygen
Fluids	Extra crystalloids
	Blood or FFP if available and potentially needed
Personnel	2 individuals to push bed
	1 individual to monitor patient
	Perfusion to transport ECMO, VAD, IABP, Impella
Notification	Final notification that patient is en route to the OR
Post-departure actions	Send cooler back to blood bank

Patients returning to the operating room after cardiac surgery are often receiving significant hemodynamic management and are commonly on other types of mechanical and respiratory support such as ECMO, VADS, Impella devices, Inhaled nitric oxide (iNO), and Inhaled prostaglandin (Flolan). These devices complicate transport and increase risk, especially when transport is urgent. The respiratory therapist will travel will all patients on Flolan or Inhaled nitric oxide (iNO). A perfusionist will travel with patients supported by an Impella device, ECMO, or IABP, or (VAD).

Specific emergencies

Cardiac tamponade

Cardiac tamponade in cardiac surgical patients is most commonly due to either bleeding after surgery or associated with an aortic dissection. May also be seen after interventional procedures such as pulmonary vein isolation (PVI), MitraClip placement, or percutaneous coronary intervention (PCI).

Tamponade due to bleeding in the post-operative period may be circumferential but is more often focal associated with compression of the atria, ventricles, vena cava, or pulmonary veins. TEE is generally helpful by demonstrating small underfilled cavities or effusion.

Tamponade associated with PVI, PCI, or other interventional procedures are initially managed with catheter placement into the pericardium. Such effusions are generally more circumferential and may demonstrate the classic signs of **Beck's Triad** which includes hypotension with a narrowed pulse pressure, jugular venous distention, and muffled heart sounds.

Image XXX- Transthoracic image of pericardial tamponade

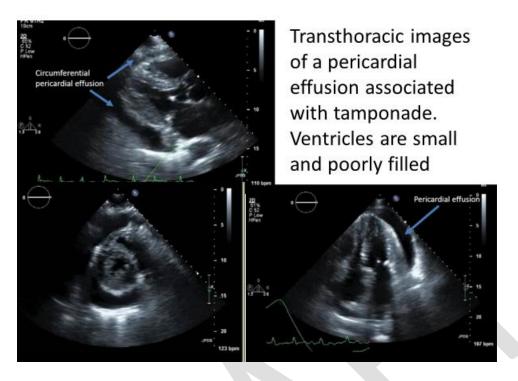
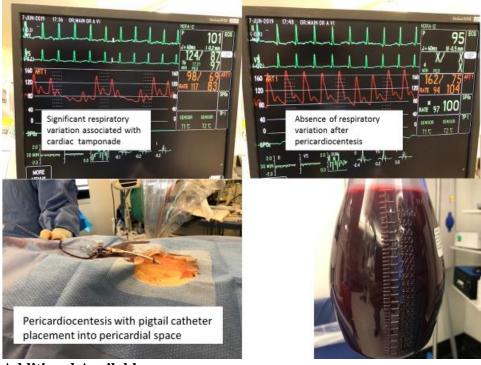



Image XXX- Hemodynamics associated with tamponade

Additional Available resources

There are many other resources available in addition to the cardiac anesthesiologist on call.

Potential cardiac resources	Contact information
Cardiac anesthesia 2 nd call	Beeper
Cardiac anesthesia resident	Beeper #21400
Cardiac anesthesia fellow	Beeper
HCICU intensivist ¹	Blake 8
	Ellison 9
Ellison 4 intensivist ²	Ellison 4
Blake 12 intensivist ²	Blake 12
MOR anesthesiologists having done fellowships in	Kate Cohen, M.D.
cardiac recently	Hovig Chitilian, M.D.
	Marcos Vidal-Melo, M.D.

- 1. Several HCICU intensivists are also cardiac anesthesiologists (Cudemus, Shelton, Lai, Wong, Crowley)
- 2. Alex Kuo is a cardiac anesthesiologist as is Abraham Sonny.

References:

- 1. Ngaage DL, Cowen ME. Survival of Cardiorespiratory Arrest After Coronary Artery Bypass Grafting or Aortic Valve Surgery. Ann Thorac Surg 2009;88:64-9.
- 2.

Appendix 1 – Cardiac Surgical Emergency Checklist

Action	Notes
Confirm patient information	
Scan bracelet	
Order blood	
Establish Standard monitoring	4 units RBCs
	4 units FFP
R2 pads	
Establish large bore IV access	14 g IV had higher flow rates than the side-
	port of the PSI
	The MAC white port his higher flows if a
	Swan or TRIC is in place
Place arterial line on side of higher blood	
pressure or bilateral lines if time	
Consider need for placement of central line	Presence of tamponade
prior to induction	
Pre-operative Huddle critical information	Presence of tamponade or effusion
	Coronary involvement or AI
Phenylephrine in line	
Induction with Etomidate	