Complex Respiratory Round April 21st, 2017

Ventilator Trouble – Recruiting Help

Ventilation Strategies Beyond ARDSnet

Matthew Meyer, MD Roberta Santiago, MD PhD Lorenzo Berra, MD

Aims

- Review a case of hypoxemic respiratory failure with respiratory acidosis
- Evaluate bedside techniques to determine ventilatory strategy: trans-pulmonary pressure, decremental PEEP trial, and recruitment maneuvers
- Discuss an approach in the post-operative period towards lung recruitment and PEEP titration

Pre-Transplant (admitted BMC 2/8/17; MGH 2/17/17) A Teaching Affiliate of Harvard Medical School

50F w/HCV / EtOH cirrhosis s/p ledipasvir/sofosbuvir (last drink >2yrs, G2 varices c/b UGIB in 2015, h/o hepatic encephalopathy), who transferred to MGH for liver transplant w/u after presenting to BMC w/abdominal pain, confusion, metabolic acidosis, hyperkalemia and AKI

PMHx: ESLD (MELD-NA 29), bipolar, BMI 44

Pre-Transplant @ MGH

- 2/18/17: Admitted to medical floor for liver transplant evaluation
- 2/28/17: Rectal bleeding, flexsig w/hemorrhoids
- 3/4/17: dx paracentesis → abdominal wall hemorrhage → R inf epigastric embo (3/6/17)
- 3/7/17: Left CFA pseudoaneurysm 3000u of thrombin injected

Liver Transplant (3/11/17)

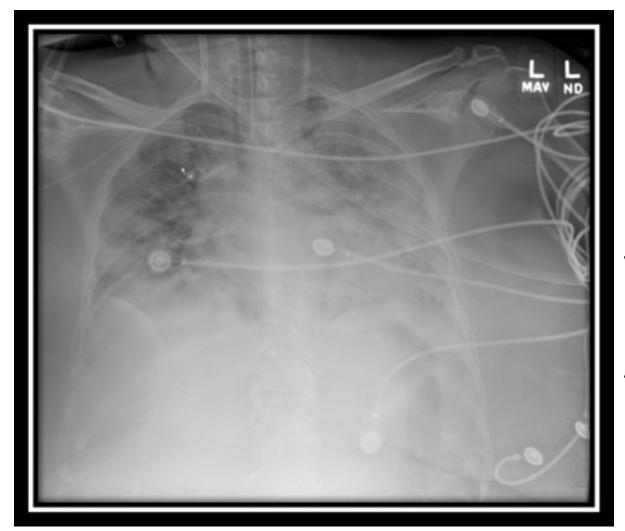
Orthotopic liver transplantation with systemic VV bypass and backbench procedure for deceased donor liver transplantation.

Respiratory Therapy Notes (3/12/17) A Teaching Affiliate of Harvard Medical School

- Appears uncomfortable. Trialed ACVC and PCV with boluses of propofol without appearing more comfortable and while dyscynchronous with vent. PSV 5/12/60%.
- Bilateral breath sounds clear. Secretions small thick tan.
 Patient more awake and responding appropriately to yes/no questions.
- Weaned FiO2 to 40%.
- PLAN: SBT and extubate later today

Respiratory Therapy Notes

• 3/13/17: PSV 5 / 12 / 50%


 3/14/17: Attempted PEEP weans – concern, due to mental status, about extubating to CPAP

 3/15/17: Desat w/FiO2 wean, increased requirement 60-80%

March 15 -- 2224

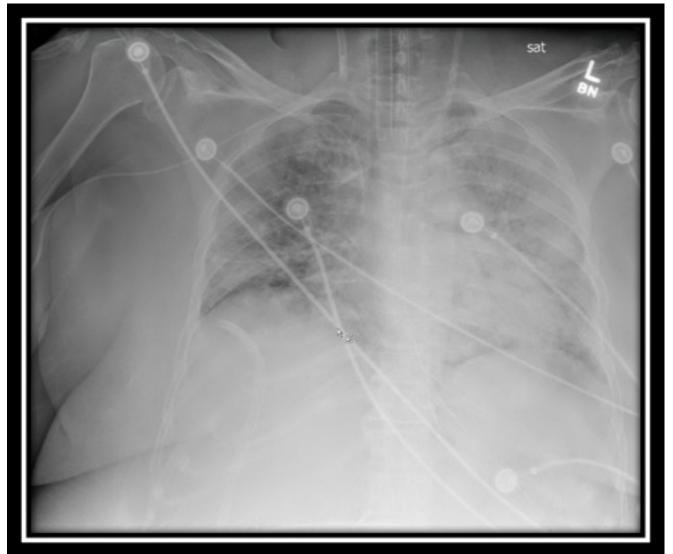
PSV 12 / 12

FiO2: 80%

Vt 600s

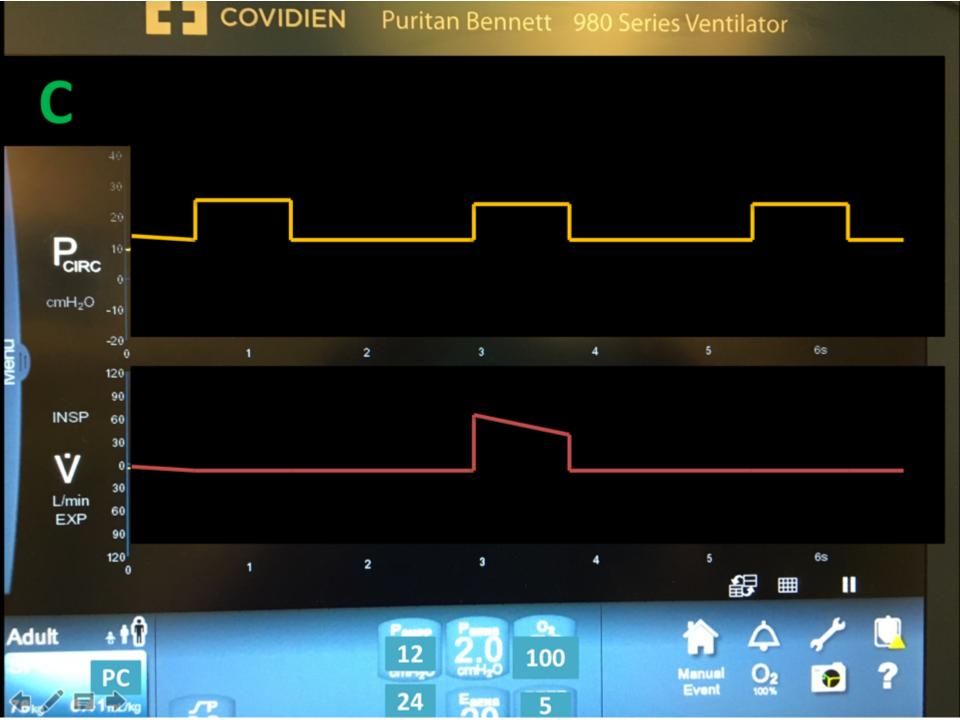
ABG 7.37/ 44 /133

March 16, 2017


• 3/16/17 0800

Bradycardia → Asystole → CPR + Epinephrine

March 16 -- 0834


PSV 12 / 12

FiO2: 100%

Vt 600s

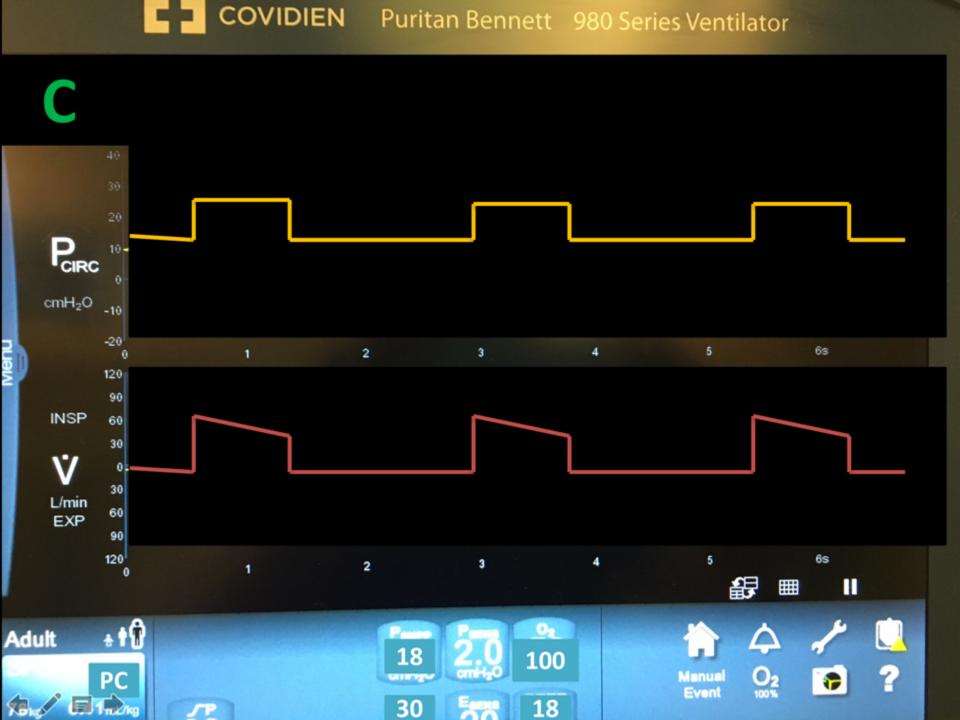
ABG 7.26/52/77

Ventilator settings, respiratory mechanics and ABG

Vent: PCV 12 / 5 / 100% / RR 24(8) / PIP17 / TV 0-200

Resp. Mechanics: NA / Drive P. 12

ABG: 7.09 / 84 / 107



Help Recruitment

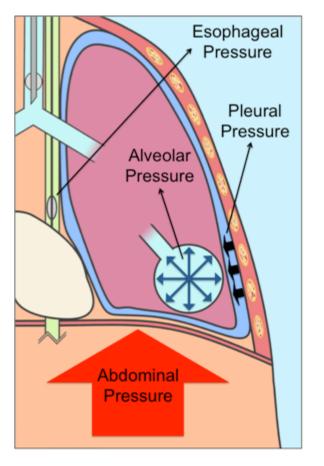
Search for leak
3-4x Respiratory Therapist
Ventilator Changed
Pulmonologist "curbside"

Ventilator settings, respiraxtory mechanics and ABG

Vent: PCV 12 / 18 / 100% / RR 30 / PIP 33 / TV 230

Respiratory Mechanics: Compliance 19 / Drive P. 12

ABG: 7.06 / 92 / 95



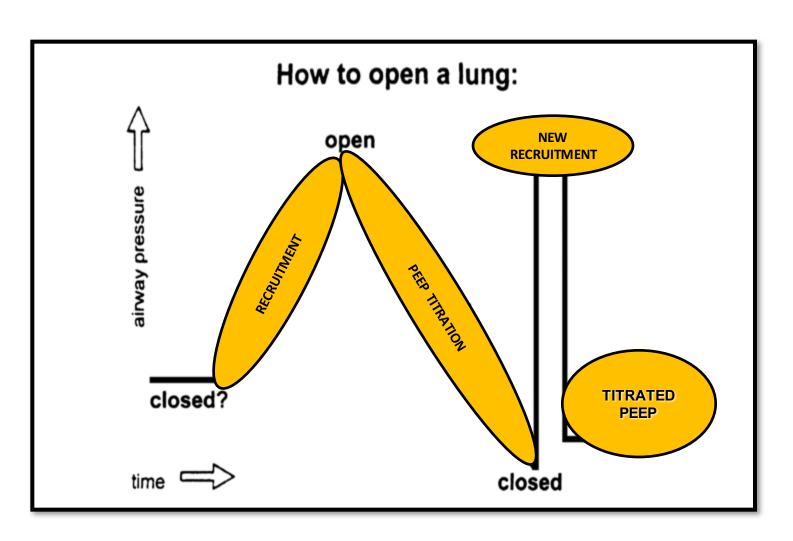
ECMO Consult Berra Lab (Consult)

How much PEEP is enough? and, when how to recruit the lungs?

Air trapping, atelectasis

PEEP, EFL reversal RM Atelectrauma Mechanics and oxygenation Prevention of improvement

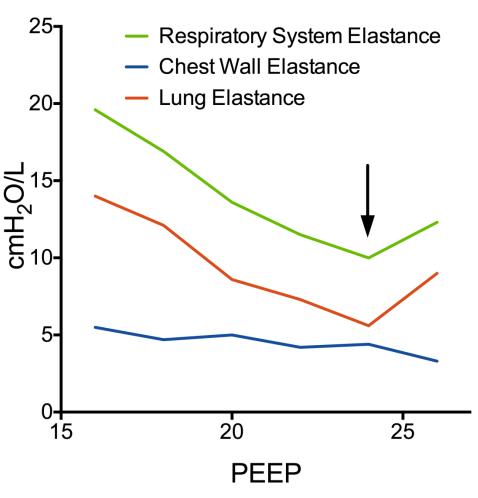
Volotrauma


atelectasis

Hypotension

"Best PEEP" still controversial

Alveolar Recruitment Rationale



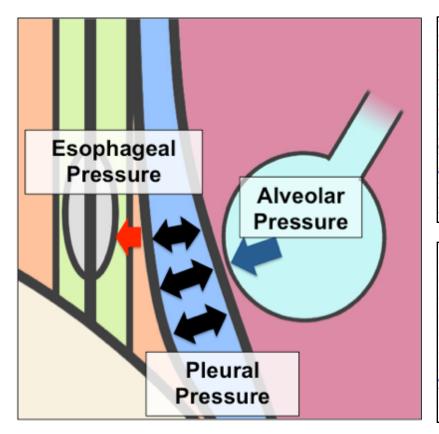
PEEP titration - I

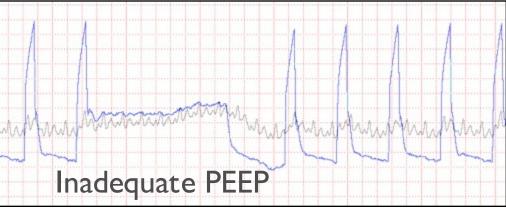
Decremental PEEP trial

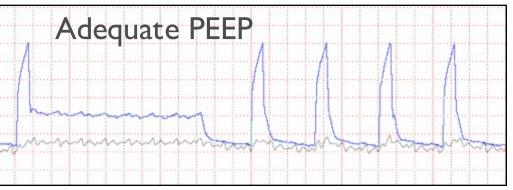
Explores elastic properties by probing the respiratory system at progressively lower PEEP levels.

Calculations

- Dynamic Compliance: CDYN = VT / (PIP PEEP)
 - Optimal PEEP: OL-PEEP = CDYNMAX + 2 cm H2O

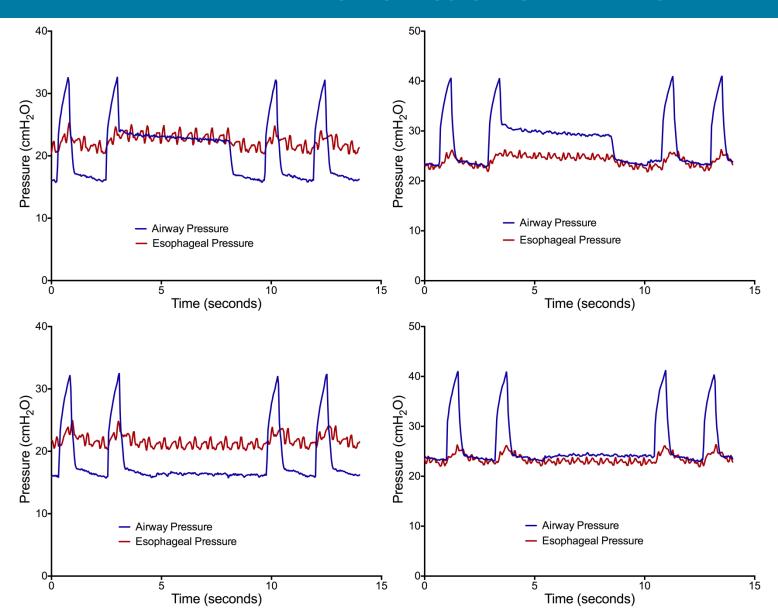

V τ	PIP	PEEP	PIP - PEEP	CDYN
360	36	20	16	22.5
360	33	18	€ 15	24
360	29	16	13	28
360	28	14	14	26
360	26	12	14	26
360	25	10	15	24
360	24	8	16	22.5




PEEP titration - 2 A Teaching Affiliate of Harvard Medical School

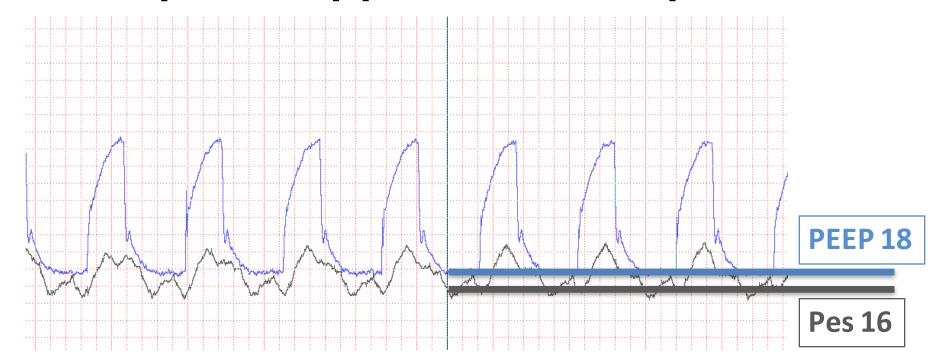
Approach with transpulmonary pressure

PEEP level is set to achieve a non-collapsing pressure at end-expiration (lowest PEEP value with positive end-exp transpulmonary pressure)



PEEP titration - 3

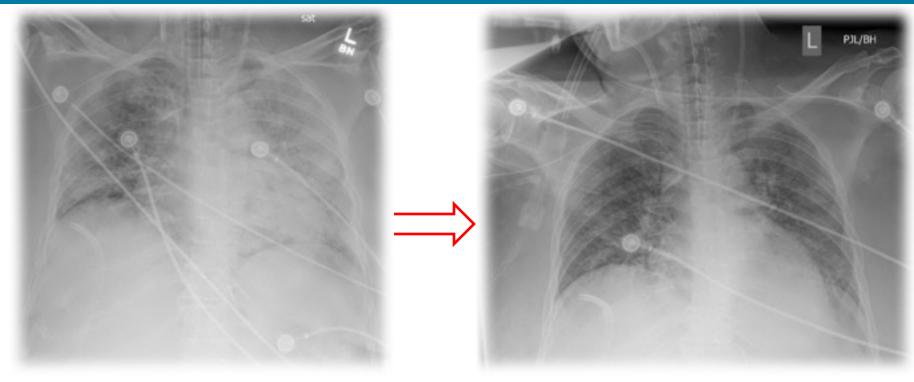
Ventilator Flowsheet


		MGH Bla	ke 12 ICU	J	N MGH Blake 12 ICU				M MGH Blake 12 ICU														
									03/16										03/17				
	1 Hr: 🖣	05-06	06-07	07-08	08-09	09-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-00	00-01	01-02	•
▼Vent Settings																							
Vent Mode		PS/C	PS/C	PS/C+	PS/C	PS/C	PS/C		PS/C	AC/VC *		AC/VC	AC/VC+	AC/VC	AC/VC	AC/VC	AC/VC+	AC/VC	AC/VC	AC/VC		AC/VC	Vent Mode
Vt (Set)										340							340				340		Vt (Set)
Set Pressure Control									14	10+													Set Pressure Control
Set Pressure Support			12		12+	5+	5		12				12										Set Pressure Suppor
PEEP/CPAP (cm H2O)		12	12	12+	12+	12+	12		18+	18+	18	18	12	18	18	18	18+	18	18	18	18+	18	PEEP/CPAP (cm
FiO2 (%)		70	70	80+	100+	100+	100		100+	70+	70		80	50	50	50	50+	50	50	50	50+	50	FiO2 (%)
Set Resp Rate		0	0	0+	0+	0+	0		30+	30+	30	30	0	30	30	30	30+	30	30	30	30+	30	Set Resp Rate
PIP (cm H2O)		15	25	26	27+	22+	19		33	35+	35	35	35	36	35	35	36+	35	34	35	34+	35	PIP (cm H2O)
Plateau Pressure										33			34				34						Plateau Pressure
Vt (exp)		600	590	640	550+	645+	630		260	360+	360	360	360	360	360	360	350+	360	360	360	350+	340	Vt (exp)
Total Minute Ventilation		10.1	8.7	9.5	15+	9.7+	10.7		8	10.8+	10.8	10.8	10.7	10.8	10.7	10.7	10.6+	10.7	10.8	10.7	10.4+	10.3	Total Minute Ventil
PPM Nitric Oxide Observed	d									20				10			14				0		PPM Nitric Oxide
▼Blood Gas																							
PH Arterial			7.33		7.26			7.09	7.06	7.20	7.28		7.31		7.31	7.31		7.31			7.34		PH Arterial
PCO2 Arterial			48		52			84	92	62	51		48		47	47		46			44		PCO2 Arterial
PO2 Arterial			94		77			107≣	95≣	197	241		182		167	149		180			192		PO2 Arterial
FiO2			UNS		1.00			0.70	0.70	UNS	0.70		0.50		UNS	UNS		UNS			UNS		FiO2
▼ Pain/Delirium																							

Transpulmonary

Before and after PEEP titration Transpulmonary pressures were equal

March 16 -- 2238


VCV 350 / 18 / 50% PIP 34

ABG 7.34 / 44 / 192

Recruitment + 8 hours

Vent: PCV 12 / <u>18</u> / 100%, RR 30, PIP 33, TV 230

Resp. Mech: Resp. Cpl 19, Drive P 12, Pleu P = 16

ABG: 7.06 / 92 / 95 (P/F 95)

VCV 350 / <u>18</u> / 50% RR 30, PIP 32

Resp. Cpl 25, Drive P 14, <u>Pleu P = 16</u>

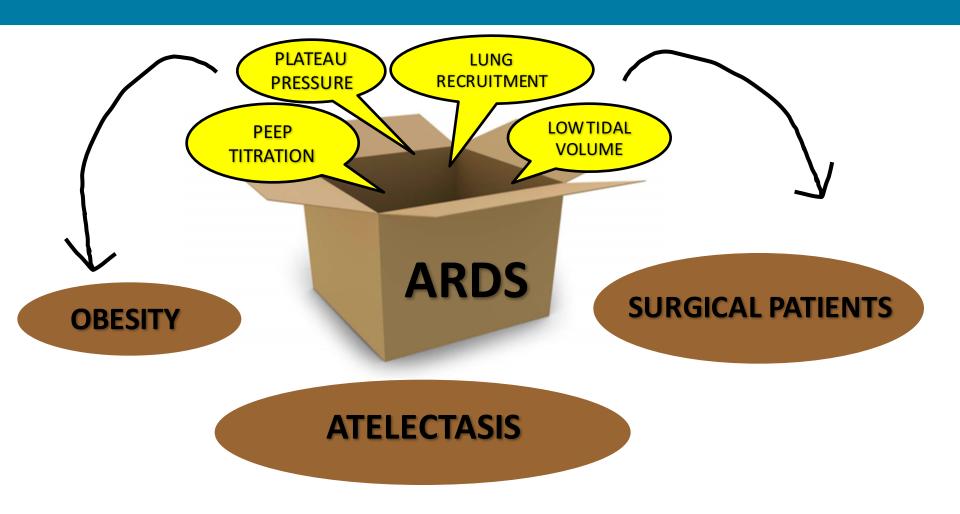
ABG 7.34 / 44 / 192 (P/F 384)

Post-Event

- 3/16/17 4/10/17: multiple bradycardia / asystole events / NSTEMI
- 3/23/17: Tracheostomy
- 4/12/17: Transferred to floor
- 4/21/17: Plan for rehab

Roberta De Santis Santiago (research fellow)

Effect of Intensive vs Moderate Alveolar Recruitment Strategies Added to Lung-Protective Ventilation on Postoperative Pulmonary Complications


A Randomized Clinical Trial

Costa Leme A, Hajjar LA, Volpe MS, Fukushima JT, De Santis Santiago RR, Osawa EA, Pinheiro de Almeida J, Gerent AM, Franco RA, Zanetti Feltrim MI, Nozawa E, de Moraes Coimbra VR, de Moraes Ianotti R, Hashizume CS, Kalil Filho R, Auler JOC, Jatene FB, Gomes Galas FRB, Amato MBP.

JAMA. 2017;317(14):1422-1432. (published online March 21)

Background

HOW TO VENTILATING OUTSIDE THE BOX?

Background

Pulmonary complication after cardiac surgery

- Open chest / cardiopulmonary bypass (CPB)
- Hypoxemia, pneumonia, VILI, ARDS
 - NIV
 - Delayed mobilization
 - Prolonged supp O2

Question

Is there any extra benefit of applying more

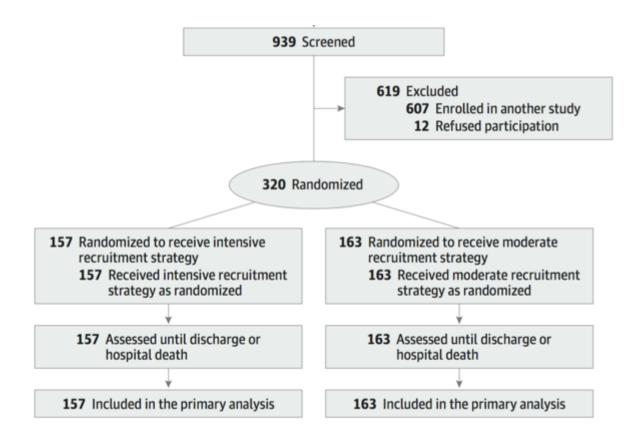
intensive alveolar recruitment strategies for

high-risk surgical patients already receiving

protective

lung ventilation?

Methods



Single-center, prospective trial, University of São Paulo, Brazil (2011 to 2014)

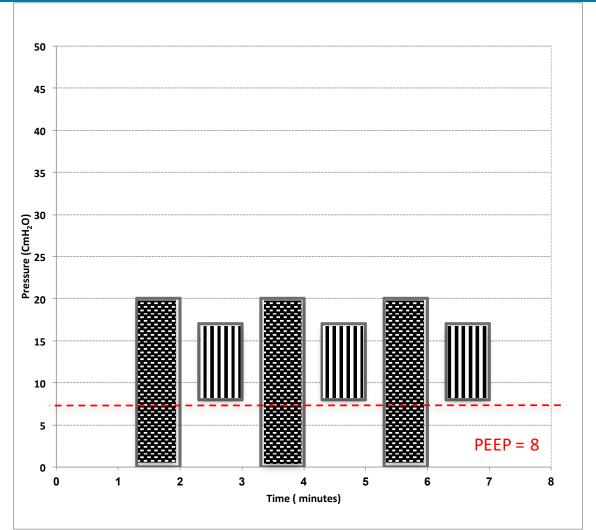
Eligibility

1)Elective cardiac surgery:
CABG and/or valve surgery
(with or without CPB)

2)Hypoxemia at ICU admission:
PaO₂/FiO₂ <250 mmHg and
PEEP ≥5 cmH₂O

Arm I (Moderate recruitment strategy)

Baseline:


VCV (6mL/Kg_{PBW}) FiO₂ 60% PEEP 5

Moderate-RS:

CPAP 20 (30 sec) FiO2 60%

Maintenance:

VCV 6 mL/kg PBW PEEP 8

AFTER 4H : RECRUITMENT WAS REPEATED

A Teaching Affiliate of Harvard Medical School

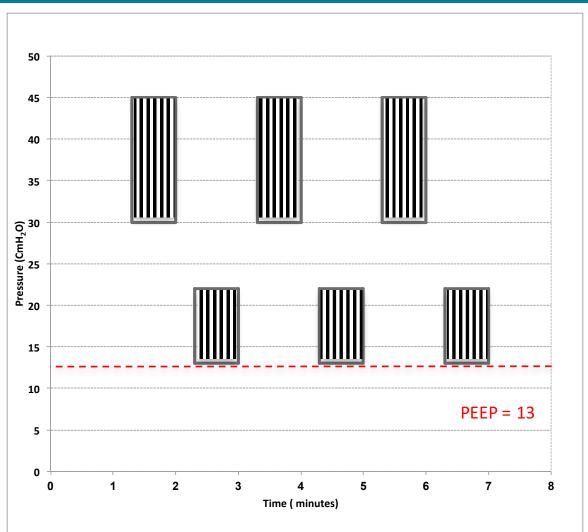
Arm II (Intensive recruitment strategy)

Baseline:

VCV (6mL/Kg_{PBW}) FiO₂ 60% PEEP 5

Intensive-RS:

PEEP 30 (60 sec) Delta P 15


RR 15 / Tinsp 1,5 sec FiO₂ 40%

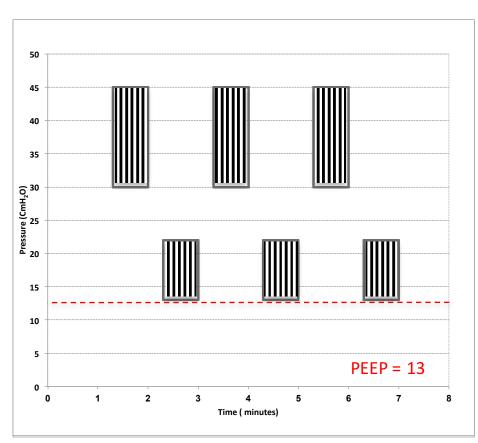
Maintenance:

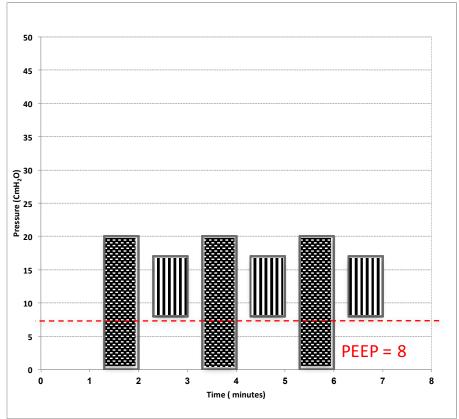
PCV

Delta P → 6 ml/kg PBW

PEEP 13

AFTER 4H : RECRUITMENT WAS REPEATED


A Teaching Affiliate of Harvard Medical School


Recruitment strategies

INTENSIVE

MODERATE

Outcomes

PRIMARY OUTCOME

Post surgical pulmonary complication

Scale 0-5

0: no symptoms / signals

4: MV ≥ 48h (invasive)

5: death

SECUNDARY OUTCOMES

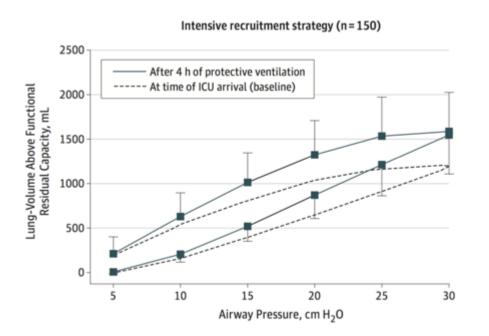
Hospital and ICU (length of stay)

Hospital mortality

Cardiovascular complications

Daily (5) post surgical pulmonary complications

Results



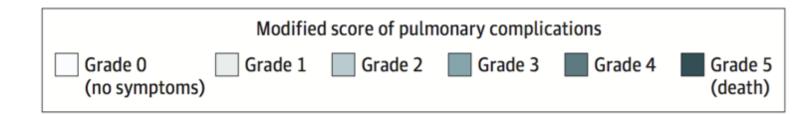
	Recruitment Strategy, No. (%) of Patients			
Variables	Intensive (n = 157)	Moderate (n = 163)		
Type of surgery				
CABG	116 (74)	119 (73)		
Valvular repair	35 (22)	36 (22)		
Combined	6 (4)	8 (5)		
Duration of surgery, median (IQR), min	390 (340-450)	390 (335-450)		
Use of CPB	134 (85)	135 (83)		
Length of CPB, median (IQR), min	91 (78-104)	90 (75-107)		

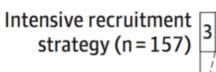
Lung Pressure-volume curve

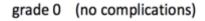
Lung Mechanics

First recruitment Second recruitment							
Variables	Baseline	15 min after 1° RM	4 hours	15 min after 2° RM	P-Value between- factor	P-Value interaction- factor	
V _T (mL/PBW)							
Moderate-RS (N=155)	6.0 (0.9)	6.1 (1.0)	6.0 (1.0)	6.1 (1.1)	0.387	0.520	
Intensive-RS (N=144)	6.1 (1.4)	6.1 (1.3)	6.1 (1.4)	6.2 (1.4)			
C _{RS} (mL/cmH ₂ O)							
Moderate-RS (N=155)	42.3 (12.8)	50.0 (15.5)	47.9 (14.5)	52.6 (17.8)	<0.001	<0.001	
Intensive-RS (N=144)	41.6 (12.7)	64.6 (19.4)	54.9 (17.1)	68.4 (19.0)			

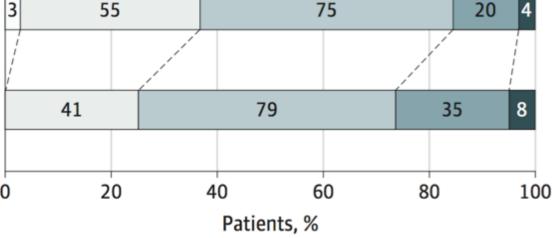
Arterial blood gas


First recruitment Second recruitment


Variables	Baseline	15 min after 1° RM	4 hours	15 min after 2º RM	P-Value between- factor	P-Value interaction- factor
PaCO ₂ , mmHg				IMPROVED VENTILATION		
Moderate-RS (N=151)	42.8 (5.9)	49.7 (9.0)	43.9 (8.0)	47.3 (9.0)	< 0.001	< 0.001
Intensive-RS (N=142)	43.3 (6.2)	45.4 (7.3)	41.6 (6.2)	41.9 (7.4)		
PaO ₂ /FiO ₂				DECREASED ATELECTASIS		
Moderate-RS (N=151)	183 (37)	236 (68)	231 (74)	239 (74)	< 0.001	< 0.001
Intensive-RS (N=142)	181 (35)	344 (74)	348 (69)	362 (67)		

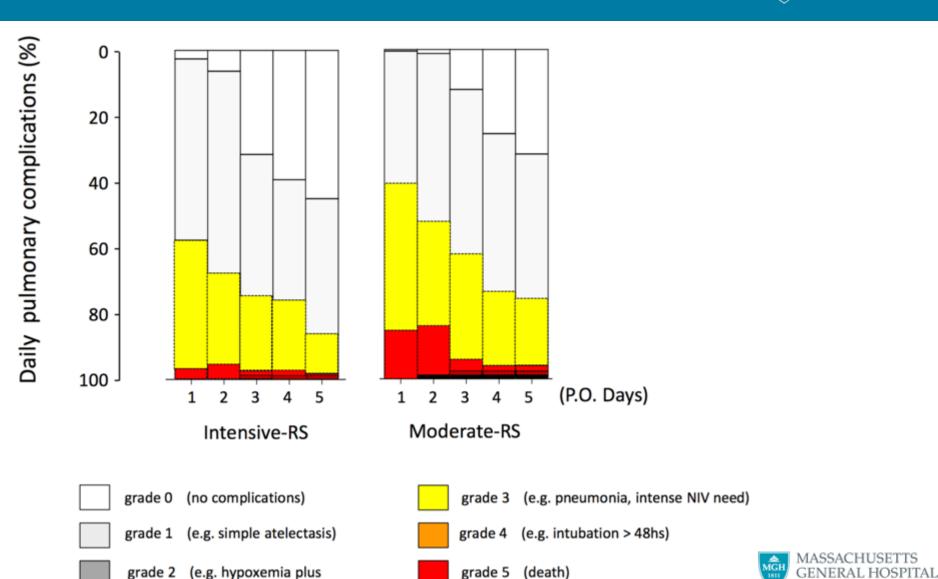

Pulmonary complications

Moderate recruitment strategy (n = 163)

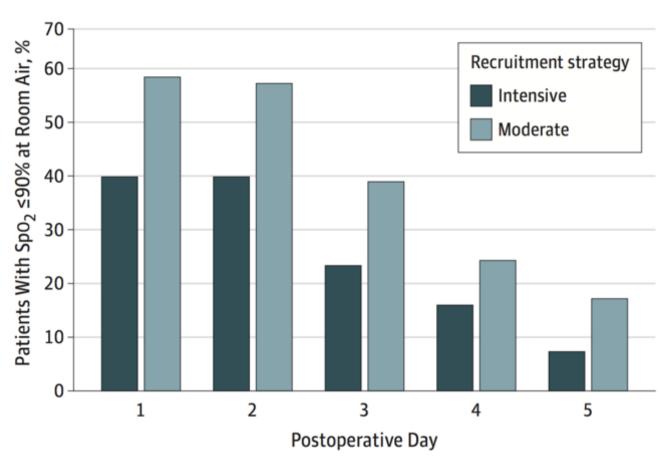

grade 1 (e.g. simple atelectasis)

grade 2 (e.g. hypoxemia plus abnormal lung findings)

grade 3 (e.g. pneumonia, intense NIV need)

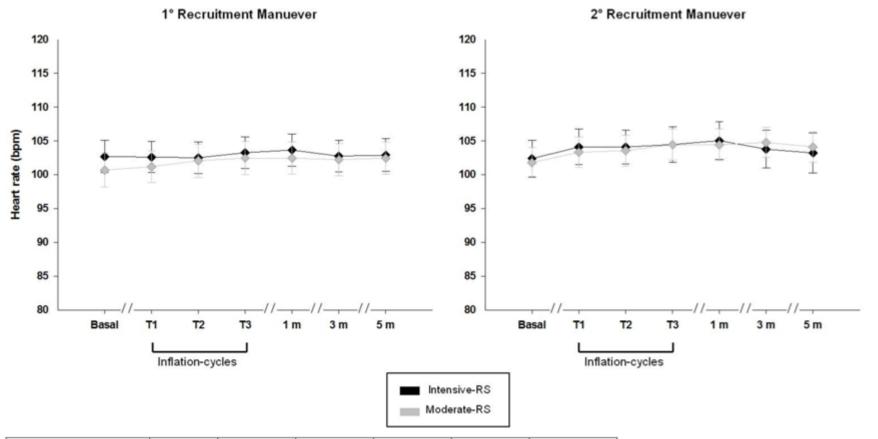

grade 4 (e.g. intubation > 48hs)

grade 5 (death)


Daily pulmonary complications

abnormal lung findings)

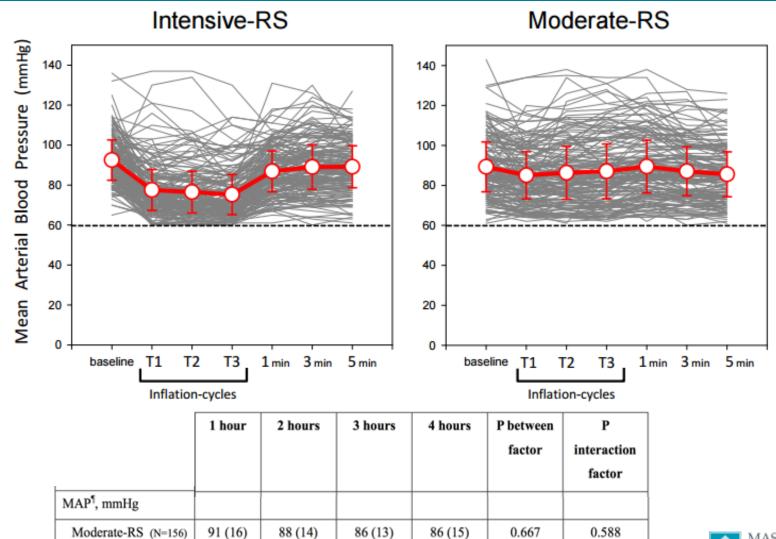
Hypoxemia


No. of patients by recruitment strategy

Intensive	154	154	154	154	154
Moderate	158	158	158	158	157

Heart rate

	1 hour	2 hours	3 hours	4 hours	P between	P
					factor	interaction factor
Heart rate, bpm						
Moderate-RS (N=156)	101 (16)	103 (15)	104 (16)	105 (15)	0.959	0.538
Intensive-RS (N=148)	101 (14)	104 (15)	104 (17)	105 (17)		


Mean arterial pressure

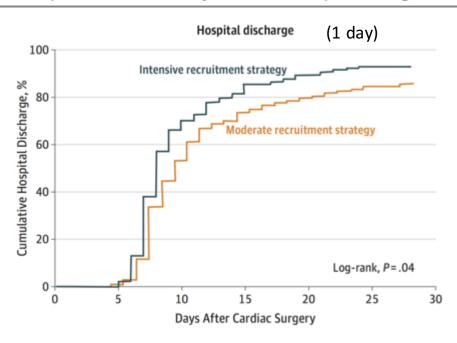
Intensive-RS (N=148)

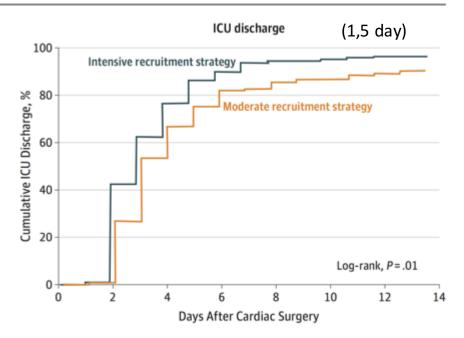
89 (16)

88 (14)

86 (13)

87 (12)

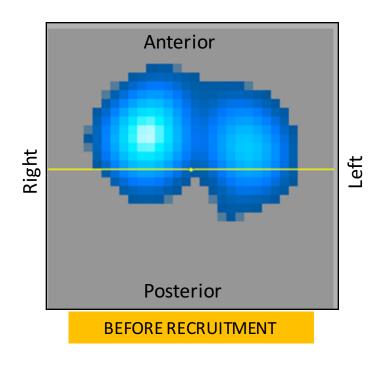

Intensive-RS decreased the needs of supp O2 and use of NIV A Teaching Affiliate of Harvard Medical School

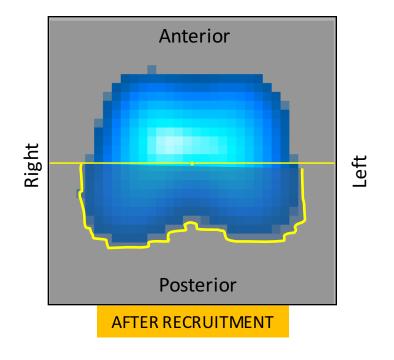

	Recruitment Strateg	y			
Variables	Intensive (n = 157)	Moderate (n = 163)	Odds Ratio (95% CI) or Absolute Difference, % (95% CI)	<i>P</i> Value Unadjusted	
Primary outcome					
Pulmonary complication severity score	1.7 (1 to 2)	2 (1.5 to 3)	1.86 (1.22 to 2.83) ^a	.003b	
Dichotomized as grade, No. (%) ^c					
≥2	99 (63)	122 (75)	-11.8 (-21.6 to -1.7)		
≥3	24 (15)	43 (26)	-11.1 (-19.8 to -2.2)		
≥4	4 (2.5)	8 (4.9)	-2.4 (-7.1 to 2.2)		
Other outcomes					
Need of supplemental O ₂ >24 h within first 5 d, No. (%) ^g	93 (59)	125 (77)	-17.5 (-27.2 to -7.2)	.001 ^h	
Mechanical ventilation in ICU, mean (95% CI), h ^g	10.6 (9.6-11.3)	11.7 (10.8-12.5)	1.1 (-1.7 to -0.3)	.02 ⁱ	
Extended use of NIV, No. (%) ^{9,j}	6 (4)	25 (15)	-11.5 (-17.2 to -5.2)	<.001 ^h	

Kaplan-Meier (discharges)

Figure 3. Kaplan-Meier Survival Analysis for Time to Hospital Discharge and Intensive Care Unit Discharge

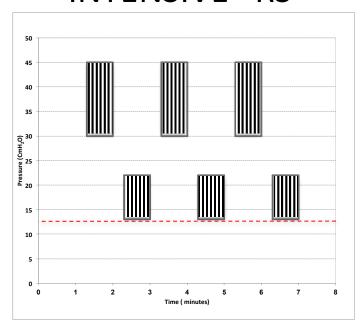
Electrical Impedance Tomography (EIT)

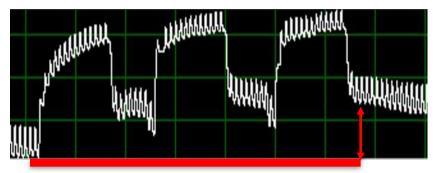

(33 patients)



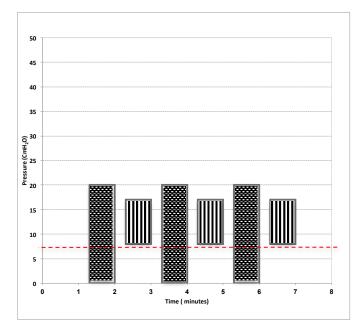
EIT imaging

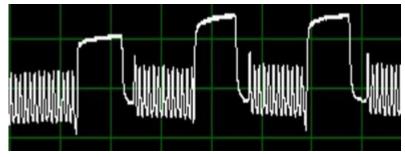
Impact on distribution of increased gas volume



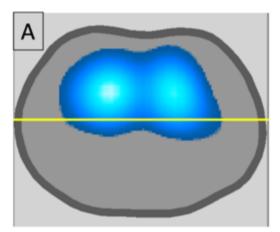


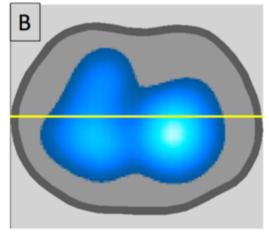
EIT traces



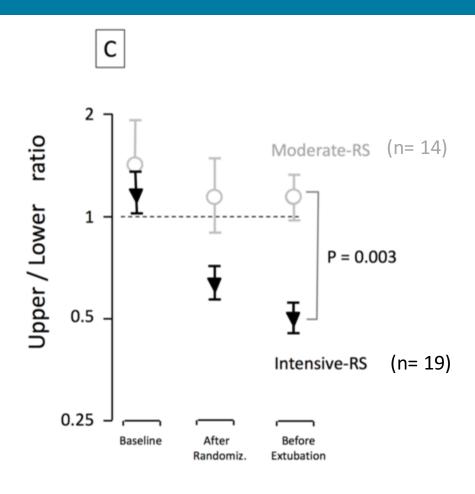

INTENSIVE -RS

MODERATE -RS

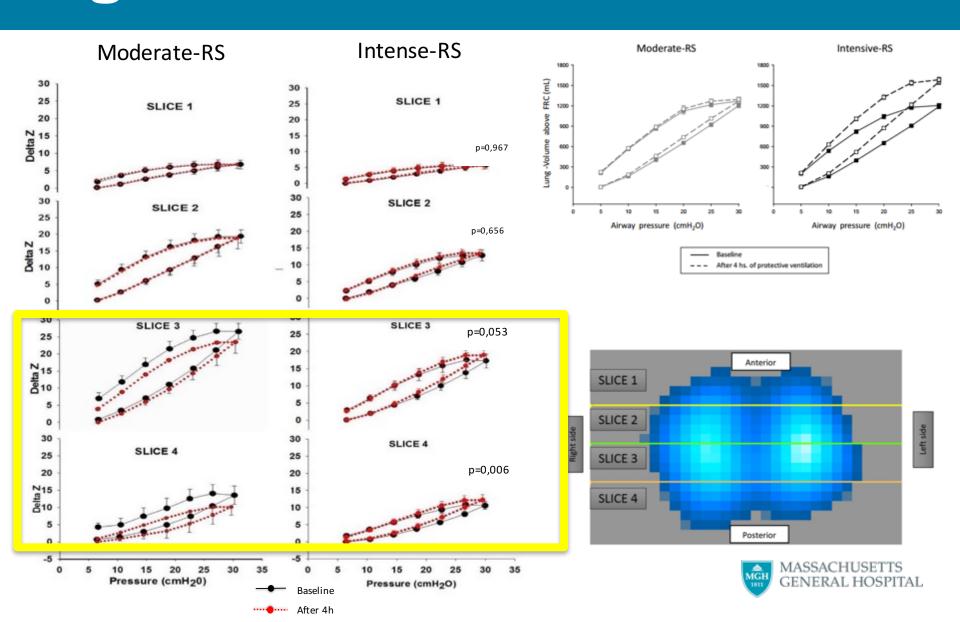




Redistribution of ventilation (EIT)



U/L ratio = 4.7 (Moderate-RS)


U/L ratio = 0.5 (Intensive-RS)

Regional P-V curves

Conclusion

Among patients with hypoxemia after cardiac surgery, the use of an intensive alveolar recruitment strategy compared with a moderate recruitment strategy, maintaining 6 mL/Kg PBW in both groups, resulted in less severe pulmonary complications during the hospital stay

Final remarks

- We became aggressive in treating hypoxemic surgical patient with early implementation of ARDS ventilation (low Vt and low plateau pressure), however to improve outcomes in our patients, we now need to address the following clinical gaps:
 - To recruit lung as early as possible by appropriate lung recruitment maneuvers
 - 2. To titrate PEEP by lung mechanics: measuring compliance, driving pressures, transpulmonary pressure
 - 3. To monitor hemodynamics during lung recruitment and PEEP titration is mandatory (at least a-line and TTE, ideally PA catheter)